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Abstract

We give a new proof of the ‘Pfaffian-Grassmannian’ derived equivalence between certain
pairs of non-birational Calabi–Yau threefolds. Our proof follows the physical construc-
tions of Hori and Tong, and we factor the equivalence into three steps by passing
through some intermediate categories of (global) matrix factorizations. The first step is
global Knörrer periodicity, the second comes from a birational map between Landau–
Ginzburg B-models, and for the third we develop some new techniques.

1. Introduction

The ‘Pfaffian-Grassmannian equivalence’ refers to a relationship between two particular Calabi–
Yau three-folds: Y1, which is a linear section of the Grassmannian Gr(2, 7), and Y2, which is
the dual linear section of the Pfaffian locus in P(∧2C7). The relationship was first conjectured
by Rødland [Rød98], who by studying their Picard–Fuchs equations observed that Y1 and Y2

appeared to have the same mirror. This means that the usual Conformal Field Theories with
these target spaces should occur as different limit points in the Kähler moduli space of a single
field theory. By itself this is a fairly common phenomenon; the special feature of this example
is that Y1 and Y2 are (provably) not birational to one another. This was the first example with
this property, and such examples remain extremely rare.

If we pass to the B-twist of this theory, this picture implies that the B-models defined on Y1

and Y2 are isomorphic, and in particular that their categories of B-branes are equivalent. The
category of B-branes on a variety is the derived category of coherent sheaves, so this suggests
that we should have a derived equivalence

Db(Y1) ∼= Db(Y2). (1.1)

This is a precise mathematical prediction, and it was proven by Borisov and Căldăraru [BC06],
and independently by Kuznetsov [Kuz06] using his broader program of Homological Projective
Duality.

Around the same time as these proofs of (1.1) appeared, Hori and Tong [HT06] wrote an
important physics paper that gave an argument for Rødland’s full conjecture, by constructing the
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necessary field theory containing Y1 and Y2 in its Kähler moduli space. The theory is a Gauged
Linear Sigma Model (GLSM), which is a standard idea, but the gauge group is non-abelian,
and furthermore the argument that Y2 occurs as a limit relies on some very original analysis of
non-perturbative effects.

In this paper we give a new mathematical proof of the derived equivalence (1.1), inspired
by the ideas of Hori and Tong. In particular we find that this derived equivalence is at heart a
birational phenomenon, but the birationality is between two Landau–Ginzburg models

(X1,W ) (X2,W ).

Here X1 and X2 are larger spaces containing Y1 and Y2, and W is a holomorphic function defined
on both of them. The space X1 is a variety and Y1 is the critical locus of W in X1, so this we
can analyze by standard techniques. However, on the other side we encounter two rather novel
phenomena:

– The space X2 is not a variety; it’s an Artin stack. It seems that the category of B-branes
on an Artin stack is not the same as the derived category, indeed the correct definition of
this category is not known in general.1

– The subspace Y2 ⊂ X2 is not the critical locus of W .

We develop new mathematical ideas to handle these phenomena, which very roughly parallel the
new physics in [HT06].

The importance of abelian GLSMs is now fairly widely understood in the mathematics lit-
erature, since they are closely connected to toric varieties and complete intersections therein.
However, we are only just beginning to understand the world of non-abelian GLSMs. We hope
that the perspective and techniques of this paper will encourage others to explore it further.

For the remainder of this introduction we explain the constructions that we’re going to use,
and give an outline of the ideas involved in the proof.

1.1 Calabi–Yau three-folds

Let V be a 7-dimensional complex vector space, and fix a surjective linear map

A : ∧2 V → V.

From these data we will build two different Calabi–Yau 3-folds:

Y1: We consider the Grassmannian

Gr(2, V ) ⊂ P(∧2V )

in its Plücker embedding. Intersecting it with the 7 hyperplanes given by the kernel of A,
we obtain the first Calabi–Yau 3-fold Y1.

Y2: We consider the projective space P(∧2V ∨) of 2-forms on V . Thinking of a 2-form as an
antisymmetric matrix we see that its rank must always be even, so generically the rank is
6. The Pfaffian locus

Pf(V ) ⊂ P(∧2V ∨)

is where the rank drops to 4 or less. Intersecting this with the linear P6 given by the image
of A∨, we obtain the second Calabi–Yau 3-fold Y2.

1See Section 4.1 for more discussion of this point.
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Assumption 1.1. We choose A generically enough that the codimension-7 space P(kerA) ⊂
P(∧2V ) is transverse to Gr(2, V ), so Y1 is smooth. The smoothness of Y2 is slightly more delicate,
since Pf(V ) has singularities along the locus where the rank drops to 2, i.e. along Gr(2, V ∨) ⊂
Pf(V ). But in fact if P(kerA) is transverse to Gr(2, V ) then P6 = P(ImA∨) avoids this singular
locus and is transverse to the smooth locus of Pf(V ), so Y2 is smooth. This follows from the fact
that Pf(V ) is the (classical) projective dual of Gr(2, V ); details are given in [BC06, §§ 1–2 and
especially Cor. 2.3].2

1.2 Relation with the Hori–Tong GLSM

Now we can explain our interpretation of Hori and Tong’s construction. Let S be a 2-dimensional
complex vector space, and consider the linear Artin stack

X =
[

Hom(S, V )⊕Hom(V,∧2S)
/

GL(S)
]
.

Notice that GL(S) acts trivially on the determinant of the vector space underlying X, so X is a
Calabi–Yau stack.

For Hori and Tong, these data specify a GLSM, which is a certain kind of 2-dimensional su-
persymmetric gauge theory. It’s conformal because of the Calabi–Yau condition. The Lagrangian
for this field theory contains a certain parameter τ (the complexified FI parameter) which is es-
sentially the Kähler modulus. The two limits |τ | � 1 and |τ | � 1 roughly correspond to the two
possible GIT quotients of X.

(i) In the first limit |τ | � 1, we choose a stability condition consisting of a positive character
of GL(S). The unstable locus is where x does not have full rank, and the GIT quotient is
the variety

X1 = Gr(2, V )×GL(S) Hom(V,∧2S).

This is the total space of the vector bundle O(−1)⊕7 over Gr(2, V ).3 In this limit, the GLSM
is expected to reduce to a sigma model with target X1.

(ii) Now we look at the other stability condition |τ | � 1, where we choose a negative character
of GL(S). At this point we have to be careful about our definition of the GIT quotient.
Conventionally, one deletes the unstable locus, then takes the scheme-theoretic quotient of
the remaining semi-stable locus. For our purposes this is too destructive, and we will instead
take the stack-theoretic quotient of the semi-stable locus.4 For this stability condition the
only unstable points are the locus p = 0, so we consider the complement

X2 := {p 6= 0} ⊂ X.

This space X2 is an Artin stack; we can think of it as a bundle over

PHom(V,∧2S) ∼= P6

whose fibres are the stacks [
Hom(S, V )

/
SL(S)

]
.

The classical GIT quotient is the scheme underlying X2: this is singular, and we’ll make
no use of it. It appears that the Artin stack X2 is the correct space to consider in the

2We are referring to Borisov–Căldăraru only for this geometric fact, which does not depend on their proof that
Db(Y1) ∼= Db(Y2). Our proof of the latter is independent of theirs.
3Here and throughout we use the convention that O(−1) := det(S) = ∧2S.
4In fact this is now quite a standard thing to do, particularly if the resulting quotient stack is only an orbifold.

3



Nicolas Addington, Will Donovan and Ed Segal

|τ | � 1 limit. In physics terminology, the gauge group has been broken only to a continuous
subgroup. Notice that since the stack X is Calabi–Yau, so too are the open substacks X1

and X2.

The GLSM has another ingredient, known as the ‘superpotential’. This is the (invariant)
function W on X defined by

W (x, p) = p ◦A ◦ ∧2x. (1.2)

Here x ∈ Hom(S, V ) and p ∈ Hom(V,∧2S), and A is our fixed linear map from above. We can
restrict W to either X1 or X2: the three pairs (X,W ), (X1,W ) and (X2,W ) then all define
Landau–Ginzburg B-models (see § 2).

The most important thing about a Landau–Ginzburg model is the critical locus of the super-
potential W . We now indicate how an analysis of this locus for the Landau–Ginzburg B-models
(X1,W ) and (X2,W ) will allow us to recover the Calabi–Yau three-folds Y1 and Y2 from the
previous Section 1.1.

(i) In the case of the pair (X1,W ), we claim that the critical locus of W is exactly our Grass-
mannian Calabi–Yau Y1. To see this, pick a basis for V , so A defines 7 sections a1, . . . , a7 of
O(1) on Gr(2, V ), which we can pull up to X1. On X1 we also have 7 tautological sections
p1, . . . , p7 of the pullback of O(−1), and the superpotential is

W =
7∑
i=1

aipi.

Because A is generic, the critical locus of this function is the set {ai = pi = 0, ∀i}, which
by definition is Y1 ⊂ Gr(2, V ).

(ii) Now consider the pair (X2,W ). If we fix a point [p] ∈ PHom(V,∧2S), then W restricts
to give a quadratic form Wp on the fibre Hom(S, V ). The rank of this quadratic form is
twice that of the (antisymmetric) form p ◦A. So the Pfaffian Calabi–Yau Y2 is the locus of
points p where the quadratic superpotential Wp on the fibre drops in rank. As we shall see
in Section 5, this is contained in (but not equal to) the critical locus of W .

1.3 Outline of proof

Associated to any Landau–Ginzburg B-model (Y,W ) there is a category, which we denote
Db(Y,W ), whose objects are ‘twisted complexes’ or ‘global matrix factorizations’. In the special
case when W ≡ 0, this category is the usual derived category of coherent sheaves Db(Y ). We
will prove the derived equivalence (1.1) as a composition of three equivalences, as follows:

Db(X1,W ) BBr(X2,W ) ⊂ Db(X2,W )

Db(Y1) Db(Y2)

Ψ2

∼

Ψ1 ∼ Ψ3∼ (1.3)

Let’s say a few words about each step.

Ψ1: This step is well-known to experts; it is a generalization of Knörrer periodicity which has
been proved several times over in recent years. We explain this step in Section 3.
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Ψ2: Let’s forget about W momentarily, and also forget that X2 is an Artin stack. Since they are
related by variation of GIT, X1 and X2 are birational Calabi–Yau spaces. Kawamata and
Bondal–Orlov have conjectured that any two birational Calabi–Yau’s are derived equivalent,
and this is known to be true in many cases. Putting W back in, a more general conjecture
is that birational Calabi–Yau Landau–Ginzburg models have equivalent categories of global
matrix factorizations.5

However, our X2 is actually an Artin stack. This complicates things, and in fact Db(X2)
is much bigger than Db(X1). However, as we shall see, we can construct a fully faithful
embedding from Db(X1) into Db(X2). We denote its image by BBr(X2), and we postulate
that this is the correct category of B-branes for the stack X2.
When we put W back in we have a corresponding equivalence from Db(X1,W ) to a certain
subcategory BBr(X2,W ) ⊂ Db(X2,W ). We will explain this step in Section 4.

Ψ3: For Hori and Tong, this is the stage that requires the most novel arguments, and the
same is true for us. We use a variation on the Knörrer periodicity argument (as in step 1)
to construct an embedding of Db(Y2) into Db(X2,W ), and show that the image is the
subcategory BBr(X2,W ). We explain this step in Section 5.

Remark 1.2. It would be nice to compare our derived equivalence to the ones found by Borisov–
Căldăraru and Kuznetsov; unfortunately we do not know how to do this.

Remark 1.3. It may be helpful to compare what we do here to the proof of the ‘Calabi–
Yau/Landau–Ginzburg correspondence’ for B-branes presented in [Seg11] and [Shi10]. The goal
of that project was similarly to re-prove a known equivalence (due to Orlov [Orl05a]) using
methods that were more faithful to the original physical arguments.

Orlov’s result is the equivalence

Db(Y ) ∼= Db
(

[Cn /Zn ] , f
)

where f is a degree n polynomial in n variables, and Y ⊂ Pn−1 is the corresponding Calabi–
Yau hypersurface. In the new proof the equivalence is factored into two steps, by considering an
abelian gauged linear sigma model [

Cn+1
/
C∗
]

with the superpotential W = fp, where C∗ acts with weights (1, 1, . . . , 1,−n) and p is the last
coordinate. There are two GIT quotients: the first one is the total space of the canonical bundle
KPn−1 , and the first step is to prove an equivalence

Db(Y ) ∼= Db
(
KPn−1 ,W

)
.

This follows from a ‘global Knörrer periodicity’ theorem, and we will use exactly the same
theorem to deduce our equivalence Ψ1.

The second GIT quotient is the orbifold [Cn /Zn ], and the second step is to prove an equiv-
alence

Db(KPn−1 ,W ) ∼= Db
(

[Cn /Zn ] , f
)
.

We will extend the methods of this proof to prove our equivalence Ψ2.

Note that there is no analogue of our third step Ψ3 in this construction.

5In fact this should follow fairly easily from the W = 0 case.
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Remark 1.4. Another previous body of work which is relevant is the study of the derived cat-
egories of intersections of quadrics, particularly as retold in [ASS12]. There one considers an
abelian gauged linear sigma model [

C3n
/
C∗
]

where the C∗ acts with weight 1 on the first 2n coordinates x1, . . . , x2n, and with weight −2 on
the last n coordinates p1, . . . , pn. We equip this with a superpotential

W =
n∑
i=1

fipi

where each fi is quadratic in the x variables. The first GIT quotient X1 is the total space of
O(−2)⊕n over P2n−1, and global Knörrer periodicity gives an equivalence

Db(X1,W ) ∼= Db(Y1)

where Y1 ⊂ P2n−1 is the Calabi–Yau formed by intersecting all the quadrics. The second GIT
quotient X2 is the total space of the (orbi-)vector bundle O(−1)⊕2n over the weighted projective
space Pn−1

2:2:...:2, and one obtains an equivalence

Db(X1,W ) ∼= Db(X2,W )

by the same methods as before. So we’ve passed through two steps, which are essentially the
same as those in the previous remark.

For the third step, we view (X2,W ) as a family of LG B-models over Pn−1, each of which is of
the form

(
[C2n /Z2 ],Wp

)
for some quadratic form Wp.

6 Where Wp is non-degenerate, Knörrer
periodicity tells us that the category of matrix factorizations on the fibre is equivalent to the
derived category of 2 points, so generically (X2,W ) looks like a double cover of Pn−1. More
careful analysis at the degenerate points reveals that Db(X2,W ) is actually a non-commutative
resolution of a ramified double cover of Pn−1.

Our equivalence Ψ3 is partially based on the techniques of this third step.

Remark 1.5. It is reasonable to ask what happens if we vary the dimensions of S and V , giving
them dimensions r and d respectively, say, and correspondingly adapt the definitions of X, X1,
X2 and W . This affects the three steps as follows:

Ψ1: The definition of the first Calabi–Yau Y1 also adapts immediately, and the equivalence Ψ1

continues to hold, as it is a consequence of a much more general theorem. Of course d must
be big enough compared to r for Y1 to be non-empty.

Ψ2: If we keep r = 2 and d odd then the correct definition of BBr(X2,W ) is clear and the equiv-
alence Ψ2 generalizes immediately. If we move beyond these cases then there are obvious
guesses as to how to proceed mathematically (particularly when r = 2 and d is even), but
we encounter an apparent discrepancy with the physical results; see Remark 4.8.

Ψ3: This step is the most delicate, and the only other case that we can handle completely is
r = 2, d = 5, which recovers the derived equivalence between an elliptic curve and its dual.
In the case r = 2, d = 6, we can recover most of Kuznetsov’s result on Pfaffian cubic 4-folds
[Kuz06], and for r = 2, d > 7 our construction suggests a possible homological projective
dual for Gr(2, d). See Remark 5.13 for more details.

6This point of view is an analogue of the physicists’ Born–Oppenheimer approximation.
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Remark 1.6. More recently Hori has provided a second physical derivation of the Pfaffian-
Grassmannian equivalence, using a dual model [Hor11]; see also [HK13]. It would be very in-
teresting to find a mathematical interpretation of this duality.

2. Categories of matrix factorizations

In this section we recall some general background on ‘global’ matrix factorizations.

2.1 Landau–Ginzburg B-models and curved dg-sheaves

We make the following definition.

Definition 2.1. A Landau–Ginzburg (or LG) B-model consists of:

– A smooth n-dimensional scheme (or stack) X over C.

– A choice of function W ∈ ΓX(OX) (the ‘superpotential’).

– An action of C∗ on X (the ‘R-charge’).

We denote the above copy of C∗ by C∗R. We require that:

(i) W has weight (‘R-charge’) equal to 2.

(ii) −1 ∈ C∗R acts trivially.

We let (X,W ) denote a Landau–Ginzburg B-model, suppressing the R-charge data from the
notation. In affine patches, OX is a graded ring (graded by R-charge, and concentrated in even
degree), and W is a degree 2 element. Such a thing is sometimes called a ‘curved algebra’; it is
a very special case of a curved A∞-algebra.

Example 2.2. Any (smooth) scheme X defines a LG B-model, by setting W ≡ 0 and letting C∗R
act trivially. This is an important special case.

Example 2.3. Let X = C2
x,p and W = xp. We let C∗R act with weight zero on x and weight 2

on p. This is a LG B-model, and it’s the basic example to which Knörrer periodicity applies (see
Section 3.1).

Example 2.4. The example we care about in this paper is the linear Artin stack

X =
[

Hom(S, V )⊕Hom(V,∧2S)
/

GL(S)
]

introduced in Section 1.2. We’ve already specified the superpotential W (1.2), but we need to
also specify the R-charge, which we do letting C∗R act on Hom(V,∧2S) with weight 2, and on
Hom(S, V ) with weight 0. These data define a Landau–Ginzburg B-model.

We also care about the open substacks X1, X2 ⊂ X. These have superpotentials given by the
restriction of W , and each one is C∗R-invariant, so they define LG B-models.

We now give the appropriate notion of a sheaf on an LG B-model.

Definition 2.5. A curved dg-sheaf on (X,W ) is a sheaf E of OX -modules, equivariant with
respect to C∗R, equipped with an endomorphism dE : E → E of R-charge 1 such that

(dE)
2 = W · idE .

Note that, in affine patches, (E , dE) is simply a graded module equipped with a ‘curved
differential’.
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Terminology 2.6. We will call (E , dE) coherent (resp. quasi-coherent) if the underlying sheaf E
is coherent (resp. quasi-coherent). If E is actually a finite-rank vector bundle, we will call (E , dE)
a matrix factorization.

We are primarily interested in matrix factorizations and coherent curved dg-sheaves.

Remark 2.7. Notice that because −1 ∈ C∗R acts trivially on X, any curved dg-sheaf splits into
‘even’ and ‘odd’ eigensheaves

E = Eeven ⊕ Eodd

and the differential dE exchanges the two. There is a weaker definition of LG B-model where
we neglect the R-charge and keep only this (trivial) Z/2 action; this results in a Z/2-graded
category, whereas with R-charge we can construct a Z-graded category.

There is a C∗R-equivariant line bundle on X associated to any character of C∗R, and we denote
these line bundles by O[k]. For any curved dg-sheaf E , we can shift the equivariant structure by
tensoring with O[k], and we denote the result by E [k].

Remark 2.8. Suppose that W = 0 and C∗R acts trivially, as in Example 2.2. Then a curved
dg-sheaf is precisely a complex of OX -modules, and a matrix factorization is a bounded complex
of vector bundles. In this case the shift functor [1] is the usual homological shift.

The following is a useful source of examples of curved dg-sheaves.

Example 2.9. Suppose Z ⊂ X is a (C∗R-invariant) subvariety lying inside the zero locus of W .
Consider the skyscraper sheaf E = OZ , equipped with the zero endomorphism dE = 0. This
defines a curved dg-sheaf, concentrated in even degree.

2.2 Categories of curved dg-sheaves

Now we discuss the morphisms between curved dg-sheaves. Let (E , dE) and (F , dF ) be curved
dg-sheaves, and let

HomX(E ,F)

denote the usual sheaf of OX -module homomorphisms between the underlying sheaves E and F .
This sheaf is C∗R-equivariant, and carries a differential given by the commutator of dE and dF ,
so it is a curved dg-sheaf on the LG B-model (X, 0). Its global sections

ΓXHomX(E ,F)

form a complex of vector spaces, graded by R-charge. Consequently, we can try to build a dg-
category whose objects are matrix factorizations, or coherent curved dg-sheaves. Of course it
would be naive just to use the chain complexes above for morphisms; we have to do some more
work to define the dg-category correctly. There are essentially two approaches:

(i) Take as objects all matrix factorizations, and as morphisms the complexes

RΓXHomX(E ,F)

where RΓX is a suitable monoidal functor that computes derived global sections. We may
for example use Dolbeault resolutions, or C̆ech resolutions with respect to some fixed C∗R-
invariant affine cover of X, if one exists. We denote the resulting dg-category by Perf(X,W ).

This was the approach adopted in [Seg11]. It is fairly concrete, but it has the major disad-
vantage that we can only use matrix factorizations as objects – in the ordinary derived category
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Db(X) it would be very frustrating if we could only use locally-free resolutions of coherent sheaves
and never the sheaves themselves. Consequently it is helpful to have a second, more technical
approach. This was developed by Orlov [Orl11] and Positselski [Pos11].

(ii) Let QCohnv
dg(X,W ) denote the dg-category of quasi-coherent curved dg-sheaves, with mor-

phisms defined ‘naively’ as above. It is easy to check that this category contains mapping
cones, so if we have a bounded chain-complex of curved dg-sheaves

E• = . . .→ E0 → E1 → E2 → . . .

we can form the totalization Tot(E•), and this is a curved dg-sheaf. We define a curved dg-
sheaf to be acyclic if it is (homotopy equivalent to) the totalization of an exact sequence.
Then we define QCohdg(X,W ) to be the quotient (as a dg-category) of QCohnv

dg(X,W ) by
the full subcategory of acyclic objects. Finally, we define Perf(X,W ) to be the full sub-
category of QCohdg(X,W ) consisting of objects which are homotopy-equivalent to matrix
factorizations.

Fortunately these two approaches define quasi-equivalent dg-categories; this was proven by
Shipman [Shi10, Prop. 2.9] for the case that X is a scheme, but the argument works for quotient
stacks without modification (see also [LP11, Prop. 2.11] for a similar statement without R-
charge). Equally, the choice of functor RΓX in the first construction is not important. From
the second construction, it is clear that Perf(X,W ) is pre-triangulated, i.e. it contains mapping
cones. The shift functor acts by shifting R-charge equivariance, i.e. tensoring with O[1].

We denote the homotopy category of Perf(X,W ) by Db(X,W ); this is a triangulated category.
We’ll adopt the convention that the set of morphisms between two objects in this category is the
graded vector space

Hom•Db(X,W )(E ,F)

given by all homology groups of the chain-complex Hom•Perf(X,W )(E ,F), not just the zeroeth

homology. For the case W = 0, this means we are using Hom•Db(X)(E ,F) to denote the graded
vector space of all Ext groups between E and F .

Remark 2.10. Denoting the homotopy category of Perf(X,W ) by Db(X,W ) is only appropriate
when X is smooth; in the singular case the latter notation should mean something different. In
particular, in the special case that W ≡ 0 and the R-charge is trivial, Perf(X,W ) is precisely
the dg-category of perfect complexes on X, whose homotopy category coincides with Db(X) if
and only if X is smooth.

Remark 2.11. In the rest of the paper we will consider various functors between categories of
matrix factorizations, and we will write everything at the level of the homotopy categories.
However it will be clear from our constructions that everything is actually well-defined at the
level of dg-categories.

2.3 Basic properties

We list some other basic properties of Db(X,W ) for later reference.

(i) If X is a scheme which admits a C∗R-equivariant ample line bundle, then every coherent
curved dg-sheaf is equivalent to a matrix factorization, and hence defines an object in
Db(X,W ) [Shi10, Lemma 2.12]. Presumably this fact is still true when X is one of the
stacks considered in this paper, but we shall not attempt to prove it, since whenever we
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encounter a coherent curved dg-sheaf we will be able to see explicitly that it is equivalent
to a matrix factorization.

(ii) Let E and F be two curved dg-sheaves in Perf(X,W ). We have discussed the ‘global derived
morphisms’

Hom•Perf(X,W )(E ,F)

which is a chain-complex of vector spaces, but we will also need the sheaf of ‘local derived
morphisms’. If U ⊂ X is a (C∗R-invariant) affine open set, then Hom•Perf(U,X)(E ,F) is a dg-

module over the graded algebra OU , i.e. a curved dg-sheaf on (U, 0). Gluing these together
over X gives us a curved dg-sheaf on (X, 0), which we denote by

RHomX(E ,F).

We have

Hom•Perf(X,W )(E ,F) = RΓXRHomX(E ,F).

In practice this sheaf is quite easy to compute: we do it by replacing E with an equivalent
matrix factorization E, and then

RHomX(E ,F) = HomX(E,F).

(iii) If E and F are matrix factorizations on an affine scheme then it is a basic observation that
HomX(E,F ) is acyclic away from the critical locus of W , because multiplication by any
partial derivative ∂iW is zero up to homotopy. Consequently, for any two curved dg-sheaves
E and F the derived morphism sheaf RHomX(E ,F) is acyclic away from the critical locus,
so its homology sheaves are supported (set-theoretically) at the critical locus. So the whole
category Db(X,W ) is in some sense supported on the critical locus of W ; cf. [Orl09].

(iv) Let Z be the zero locus of W and

ζ : Z ↪→ X

the inclusion. Extending Example 2.9, any curved dg-sheaf on (Z, 0) pushes forward to give
a curved dg-sheaf on (X,W ), so we have a functor

ζ∗ : Db(Z, 0)→ Db(X,W ).

(Note that Z is typically singular so we must use a modified definition of Db(Z, 0) here.)
If we neglect R-charge, it is well-known (e.g. [Orl11]) that this functor is essentially sur-
jective, and its kernel is the category of perfect complexes on Z. This gives an equivalent
definition of Db(X,W ) as the ‘derived category of singularities’

Dsg(W ) = Db(Z)/Perf(Z).

Presumably this is still true if we include R-charge, but we shall not bother to check the full
statement here. We just note the easy fact that ζ∗OZ is equivalent to the matrix factorization

O[1] OW

1

and this is contractible. It follows quickly that if P • is any C∗R-equivariant perfect complex
on X then ζ∗ζ

∗P • is contractible in Db(X,W ).

10
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3. Knörrer periodicity and the Grassmannian side

One of the most important classical facts about matrix factorizations is Knörrer periodicity
[Kno88]. We will briefly discuss this phenomenon, and various modern formulations of it that
have appeared in recent years [Orl05b, Isi10, Shi10, Pre11], and conclude by showing our first
equivalence Ψ1 in 3.5.

3.1 Knörrer periodicity over a point

Consider a LG B-model X = C2 with the superpotential W = x1x2, and let Y be the subscheme
of X consisting of just the origin (we neglect R-charge for the moment). In its simplest form,
Knörrer periodicity states that we have an equivalence

Db(Y ) ∼= Db(X,W ).

Remark 3.1. Since Y is the critical locus of W , this is a situation where we may take § 2.3(iii)
very literally.

Finding such an equivalence is the same thing as finding a curved dg-sheaf E on (X,W ) which
generates the whole category, and satisfies

Hom•Db(X,W )(E , E) = C.

Recall that this space of morphisms is a graded vector space, so implicit here is the statement
that there are no morphisms in non-zero degree. Thus the object E behaves, homologically, like
an isolated point.

There are many possible choices for such an E ; one is the skyscraper sheaf along the x2-axis

E = O{x1=0}

with dE = 0 (this is an instance of Example 2.9). Then we get an equivalence from Db(Y ) to
Db(X,W ) by mapping OY to E .

Remark 3.2. This choice of E breaks the symmetry between x1 and x2. This is an important
feature: there is a second choice where we let E be the skyscraper sheaf on the x1-axis, and this
produces a different equivalence, differing from the first one by a shift. A related fact is that if
we want to add R-charge to this construction then we can do it by letting C∗R act with weight 2
on x1 and weight 0 on x2, or vice versa, but this also breaks the symmetry.

This basic version of Knörrer periodicity can be generalized in various directions. Firstly, we
may replace X = C2 with X = C2n, and W with a non-degenerate quadratic function, so the
critical locus of W is still the origin. We replace the isotropic line {x1 = 0} ⊂ C2 with a choice
of maximally isotropic subspace M ⊂ C2n. Then one can check that E = OM is point-like, and
generates Db(X,W ), so as above it gives us an equivalence between the derived category of a
point and Db(X,W ).

3.2 In families: first version

Now we can try to formulate this construction in families. Most obviously we could choose X to
be the total space of an even-rank vector bundle

π : X → Y

and W to be a fibrewise non-degenerate quadratic form on X. Suppose we can find a subbundle
M ⊂ X which gives a maximally isotropic subspace in each fibre. Then for each point y ∈ Y

11
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we have a curved dg-sheaf Ey = OMy on the fibre over y, and these fit together into a family
E = OM on the whole space. We want to consider the functor whose Fourier–Mukai kernel is E ,
i.e. it sends each skyscraper sheaf Oy ∈ Db(Y ) to the corresponding Ey ∈ Db(X,W ), and sends
the whole structure sheaf OY to E . In other words, we consider the diagram

Y
π←−M ι−→ X

and the induced functors

Db(Y )
π∗−→ Db(M)

ι∗−→ Db(X,W ).

It is proven in [Pre11, Thm. 9.1.7(ii)] that, given such a M , the composition π∗ι∗ gives us an
equivalence between Db(Y ) and Db(X,W ).7

Remark 3.3. In particular, π∗ι∗ is fully faithful. We pause to discuss this point in a little more
detail, since the reasoning used will be important in Section 5.

The functor π∗ι∗ is linear over the sheaf of functions on Y , so fully-faithfulness can be checked
locally on Y . Moreover if we restrict to an affine neighbourhood in Y then the derived category
is generated by the structure sheaf, so locally we only need to check fully-faithfulness on the
structure sheaf. Therefore it’s enough to check that the endomorphisms of

π∗ι∗OY = E ∈ Db(X,W )

agree with the endomorphisms of OY ∈ Db(Y ), as a sheaf over Y , i.e. that

π∗RHomX(E , E) ∼= OY .

This statement is equivalent to the fully-faithfulness of π∗ι∗; in particular it obviously implies
that

Hom•Db(X,W )(Ey, Ey) ∼= Hom•Db(Y )(Oy,Oy)
for all points y ∈ Y . Informally at least the converse implication also holds: if we have a family
of orthogonal objects Ey, and each one is ‘point-like’ in this sense, then the resulting kernel E
must give a fully faithful functor.

3.3 In families: second version

There is a more general family version of Knörrer periodicity, based on the observation that
we don’t actually need a projection π : X → Y , only a projection π : M → Y . Specifically, we
consider the total space of a vector bundle

π : X → B

over some base B, and let

Y ⊂ B
be the zero locus of some transverse section f ∈ ΓB(X∨). We can equip X with the superpotential

W = fp

where p denotes the tautological section of π∗X. Since f is transverse, Y is smooth and is exactly
the critical locus of W . The normal bundle NY/X to Y carries a non-degenerate quadratic form
given by the Hessian of W , and furthermore this bundle has a canonical maximally isotropic

7The existence of such an M is quite a strong condition; see [ASS12, § 4.3] for some discussion of this point.
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subbundle given by M = X|Y . So we should be able to get an equivalence between Db(Y ) and
Db(X,W ) using the diagram

Y
π←− X|Y

ι−→ X.

Note that there is a more-or-less canonical way to add R-charge to this construction, by letting
C∗R act trivially on B and with weight 2 on the fibres of X.

Theorem 3.4 [Shi10, Thm. 3.4]. Consider a LG B-model (X,W ) of the form described above,
with C∗R acting fibrewise with weight 2. Assume that the base B is a smooth quasi-projective
variety. Then the composition

Db(Y )
π∗−→ Db(X|Y )

ι∗−→ Db(X,W )

is an equivalence.

Similar theorems are proven in [Orl05b] and [Isi10]. Note that C∗R is acting trivially on Y , so
Db(Y ) really does mean the usual derived category of Y .

3.4 Grassmannian example

Now consider the LG B-model (X1,W ) discussed in Section 1.2, and described more precisely in
Example 2.4. This model is exactly of the form specified by the above theorem: X1 is the total
space of the vector bundle π : O(−1)⊕7 → Gr(2, V ), and the R-charge is acting trivially on the
Grassmannian and with weight 2 on the fibres. Also the superpotential is W = fp, where

f = A ◦ ∧2x

is a transverse section of O(1)⊕7 on Gr(2, V ) and p is the tautological section of π∗O(−1)⊕7. The
zero locus of f is the Calabi–Yau 3-fold Y1, and hence Theorem 3.4 yields the following.

Corollary 3.5. Db(Y1) is equivalent to Db(X1,W ).

This concludes our discussion of the first equivalence Ψ1.

4. Windows

In this section we will define the category BBr(X2,W ) and the equivalence Ψ2.

4.1 Without the superpotential

Let

X1
ι1
↪→ X

ι2←↩ X2

be the three spaces considered in Section 1.2. For the purposes of this section we set the super-
potential W to zero, and take the C∗R action to be trivial, so Db(Xi) and Db(X) are the usual
derived categories.

We are interested in the relationship between Db(X1) and Db(X2). If X1 and X2 were mani-
folds (or orbifolds) then we would expect them to be derived equivalent, since they are birational
and Calabi–Yau. What should we expect in this situation?

Physically, we can reason as follows. Using Hori and Tong’s construction, we know that the
sigma models with targetsX1 andX2 lie in the same Kähler moduli space of CFTs.8 Consequently

8We gloss over the fact that these targets are non-compact.
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the B-models associated to each space are the same. In particular, they have the same category
of B-branes, and so we should have two equivalent categories

BBr(X1) ∼= BBr(X2).

Since X1 is a manifold, we know that the category of B-branes BBr(X1) is Db(X1). However,
X2 is an Artin stack. A “sigma-model” whose target is an Artin stack is really a gauge theory,
and understanding the category of B-branes in a gauge theory is much more difficult. We will
not attempt to address this general question; instead we will make an ad hoc definition of the
category BBr(X2), constructing a fully faithful embedding

Db(X1) ↪→ Db(X2)

and defining BBr(X2) as the image of this embedding. The main motivation for our definition is
just that it gives something equivalent to Db(X1), but we will give some a posteriori justification
(see Remark 4.7).

To construct the embedding we will use the technique of ‘grade-restriction’, or ‘windows’,
introduced by the third-named author in [Seg11]. This was directly inspired by the physics paper
[HHP08], but was also based on a long history of mathematical ideas by Beilinson, Kawamata,
Van den Bergh, etc. What we do is to find a subcategory

G ⊂ Db(X)

such that the restriction functor ι∗1 : G → Db(X1) is an equivalence, and the other restriction
functor ι∗2 : G → Db(X2) is fully faithful. In fact this technique has now been developed into an
elegant general theory [HL12, BFK12] which can be applied immediately in this example to show
that such a G exists. Unfortunately the description that this theory gives of the image of G inside
Db(X2) is not explicit enough for our purposes, so we take a more hands-on approach.

Observe that any representation of GL(S) = GL(2) determines a vector bundle on each of
the spaces that we are considering. We will be interested in the ‘rectangle’ of representations{

Syml S∨ ⊗ (detS∨)m : l ∈ [0, 3) , m ∈ [0, 7)
}
. (4.1)

The associated vector bundles on Gr(2, V ) form a (Lefschetz) full strong exceptional collection by
[Kuz08, Thm. 4.1]. Let Tl,m denote the vector bundle Syml S∨(m) on X associated to Syml S∨⊗
(detS∨)m, and let

G =
〈
Tl,m : l ∈ [0, 3) , m ∈ [0, 7)

〉
⊂ Db(X) (4.2)

be the subcategory generated by this set of vector bundles.9

Proposition 4.1. The restriction functor

ι∗1 : G → Db(X1)

is an equivalence, and the restriction functor

ι∗2 : G → Db(X2)

is fully faithful.

9Here (and throughout the paper) we mean ‘generated’ in the strong sense, by taking shifts and cones but not
direct summands – that is, G consists of those objects that have a finite resolution in terms of this set of bundles.
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Consequently we obtain an embedding of Db(X1) into Db(X2), and its image is the subcategory
generated by the vector bundles associated to the representations (4.1). We define BBr(X2) to
be this subcategory.

Remark 4.2. The reason we’re not using the general theory of [HL12, BFK12] is that it fails to
identify this explicit set of generating bundles for the category G. This is because Kuznetsov’s
exceptional collection does not fit with the ‘grade-restriction rules’ for this GIT problem (for
comparison, Kapranov’s exceptional collection fits the Grassmannian side perfectly, but not the
Pfaffian side). It would be interesting to find a natural derivation of Kuznetsov’s exceptional
collection via GIT.

We split the proof of Proposition 4.1 into four lemmas.

Lemma 4.3. Both ι∗1 and ι∗2 are fully faithful.

Proof. It is enough to check this statement on the generators of G. On X, there are no higher
Ext’s between them: since they are vector bundles we have

ExtpX(Tl,m, Tl′,m′) ∼= RpΓX(T∨l,m ⊗ Tl′,m′)

and the functor of taking GL(S)-invariants (i.e. global sections) is exact. Also, the Ext0’s between
the generators will not change when we restrict to either X1 or X2. To see this note that the
complements of both substacks have codimension at least 2, so by Hartogs’ lemma the space of
all sections of the bundle T∨l,m⊗Tl′,m′ doesn’t change after restriction, and therefore neither does
the space of GL(S)-invariant sections.

So we need only check that the generators don’t acquire any higher Ext’s after restriction,
i.e. that

Ext>0
Xi

(
ι∗iTl,m, ι

∗
iTl′,m′

)
= 0

for all l, l′ ∈ [0, 3) and m,m′ ∈ [0, 7), for both i = 1 and i = 2.

For i = 1 we use the projection formula applied to the projection

q1 : X1 = Tot
(
O(−1)⊕7

)
→ Gr(2, V )

to compute the cohomology of

RHomX1

(
ι∗1Tl,m, ι

∗
1Tl′,m′

)
∼= RHomX1

(
q∗1 Syml S∨(m), q∗1 Syml′S∨(m′)

)
∼= RHomGr(2,7)

(
Syml S∨(m), q1∗q

∗
1

(
Syml′S∨(m′)

))
∼= RHomGr(2,7)

(
Syml S∨(m), Syml′S∨(m′)⊗ Sym•O(1)⊕7

)
.

Our claim now follows from the vanishing result used in [Kuz08], which is stated below in
Lemma 4.4, and a minor extension of it, given in Lemma 4.5.

For i = 2 we work similarly, using the fact that X2 has a projection

q2 : X2 = Tot
(
S∨⊕7

)
→ P

to an Artin stack P =
[
∧2 S⊕7 − {0}

/
GL(S)

]
. There is a map δ : P → P6 induced by

det : GL(S)→ C∗, and forgetting the isotropy groups. Now working as above for X1, and using
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that the functor δ∗ is exact, we have

RHomX2

(
ι∗2Tl,m, ι

∗
2Tl′,m′

)
∼= RHomP

(
Syml S∨(m), Syml′S∨(m′)⊗ Sym• S⊕7

)
∼= RΓP6δ∗

(
Syml S ⊗ Syml′S∨ ⊗ (detS∨)m

′−m ⊗ Sym• S⊕7
)
.

Now using the Littlewood–Richardson rule [FH96, §A.1] we may decompose this last bundle
into direct summands corresponding to irreducible representations of GL(S). The summands we
obtain are Schur powers SµS∨ with µ 6 (m′,m′ + l′), with the maximal µ occurring being the
highest weight for the bundle Tl′,m′ . Now we evaluate δ∗(SµS∨). Every point of P has non-trivial
stabilizer SL(S) ⊂ GL(S), and SµS has non-trivial SL(S)-invariant vectors only if µ = (ν, ν). In
this case SµS∨ ∼= (detS∨)ν and hence δ∗(SµS∨) ∼= OP6(−ν). This has no higher cohomology as
long as ν 6 6, and so we are done because ν 6 m′ 6 6 by construction.

The following two lemmas are calculations used in Lemma 4.3 above.

Lemma 4.4 [Kuz08, Lem. 3.5]. Let Gr = Gr(2, V ), with dimV = n odd. If 0 6 l, l′ 6 1
2n− 1 and

0 6 k 6 n− 1 then

ExtpGr

(
Syml S∨, Syml′S∨(−k)

) ∼= {Syml′−l S∨ if l 6 l′, k = 0, p = 0,

0 otherwise.

Proof. This is a specialisation of the result of [Kuz08, Lem. 3.5] to odd-dimensional V , as required
in our case. The proof is combinatorial, using the Littlewood–Richardson rule to decompose a
bundle on the Grassmannian into direct summands corresponding to irreducible representations
of GL(S), and then the Borel–Bott–Weil theorem (as explained in [Kuz08, § 3]) to calculate their
cohomology.

Lemma 4.5. In the setting of Lemma 4.4 above, but with k < 0, we have

Ext>0
Gr

(
Syml S∨, Syml′S∨(−k)

)
= 0.

Proof. It suffices to check that Syml S⊗Syml′S∨(−k) on Gr has no higher cohomology. Following
the proof of [Kuz08, Lem. 3.5] we have

Syml S ⊗ Syml′S∨(−k) ∼= Syml−1 S ⊗ Syml′−1 S∨(−k) ⊕ Sl
′−k,−l−kS∨,

and so we may proceed inductively. We therefore need only check that the Schur power SαS∨
has no higher cohomology on the Grassmannian Gr for

α =
(
l′ − k,−l − k, 0, . . . , 0

)
.

The proof then follows by application of the Borel–Bott–Weil theorem, with the following two
cases.

Case k 6 −l. In this case α is a dominant weight, and hence there is no higher cohomology.

Case −l < k < 0. Using ρ to denote half of the sum of the positive roots of GL(n) as in
[Kuz08], we have that

α+ ρ =
(
n+ l′ − k, n− l − k − 1, n− 2, n− 3, . . . , 1

)
.

Our assumptions give that n − 1 > n − l − k − 1 > 1
2n > 0, and hence the second entry in this

weight coincides with one of the later ones. By the Borel–Bott–Weil prescription, it follows from
this that no cohomology occurs in this case.
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This completes the proof of the lemma.

The final stage in the proof of Proposition 4.1 is the following.

Lemma 4.6. ι∗1 : G → Db(X1) is essentially surjective.

Proof. This is the statement that the set of vector bundles on X1 corresponding to the set (4.1)
of GL(S)-representations generate the derived category Db(X1). This may be deduced from the
fact that the corresponding set of vector bundles on Gr(2, V ) generates the derived category
Db(Gr(2, V )) by Kuznetsov’s result [Kuz08, Thm. 4.1], as follows.

First note that any coherent sheaf E on X1 extends to a coherent sheaf E ′ on X, and since
X is smooth this extension E ′ has a finite resolution by vector bundles. Furthermore, the only
vector bundles which occur are the Tl,m associated to GL(S)-representations, as X is a quotient
of a vector space by GL(S). Restricting this resolution via the inclusion ι1 : X1 ↪→ X we obtain
a finite resolution of E on X1 by the ι∗1Tl,m. We have that

ι∗1Tl,m = q∗1

(
Syml S∨(m)

)
,

so that the ι∗1Tl,m are pullbacks via the projection q1 : X1 → Gr(2, V ) of the bundles Syml S∨(m)
on Gr(2, V ). These latter bundles are themselves resolved by Kuznetsov’s full exceptional collec-
tion corresponding to the set (4.1) of GL(S)-representations, and hence we deduce the result.

This concludes the proof of Proposition 4.1.

Remark 4.7. Recall that we’re making an ad hoc definition of the category of B-branes on X2 as

BBr(X2) := ι∗2G =
〈
ι∗2Tl,m : l ∈ [0, 3) , m ∈ [0, 7)

〉
⊂ Db(X2).

Let’s explain why this definition is not totally unreasonable. We have that X2 is a bundle over
P6, with fibres

F =
[

Hom(S, V )
/

SL(S)
]
,

and so we should expect BBr(X2) to be some kind of product of BBr(P6) = Db(P6) with some
category BBr(F) of B-branes on the fibres. The derived category of P6 is generated by the
Beilinson exceptional collection{

ι∗2T0,m = O(m) : m ∈ [0, 7)
}
,

so what we’re implicitly doing is declaring that

BBr(F) =
〈
O, S∨, Sym2 S∨

〉
⊂ Db(F).

We don’t have a justification for this definition either, but it does satisfy

rankK0(BBr(F)) = 3

which matches Hori–Tong’s calculation of the Witten index for the gauge theory described by F,
see [HT06, Table 1].

Remark 4.8. Let’s briefly discuss how one might adapt this argument if we were to vary the
dimensions of S and V , making them r and d respectively. The general theory of [HL12, BFK12]
still gives us an embedding of Db(X1) into Db(X2), but as before it tells us very little about the
image. So we should ask to what extent our more explicit methods can be adapted.
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If we keep r = 2 and d odd then everything works essentially verbatim, using the rectangular
window {

Syml S∨ ⊗ (detS∨)m : l ∈
[
0, 1

2(d− 1)
)
, m ∈ [0, d)

}
.

Now let’s keep r = 2, but make d even. Something goes wrong even at the crude heuristic level
of Remark 4.7, because now d does not divide

(
d
r

)
. Mathematically, it seems sensible to declare

that BBr(X2) is the subcategory generated by the rectangle{
Syml S∨ ⊗ (detS∨)m : l ∈

[
0, 1

2d
)
, m ∈ [0, d)

}
.

If we delete 1
2d bundles from the corner of this rectangle then we get Kuznetsov’s (non-rectangular)

Lefschetz exceptional collection on Gr(2, d), and we see that we obtain an embedding of Db(X1)
into BBr(X2), rather than an equivalence. This definition allows us to recover a result of
Kuznetsov in the case r = 2 and d = 6 (see Remark 5.13). Unfortunately, this definition does not
appear to be compatible with the results of [HT06]. It suggests that the category of B-branes on
the fibre F should be generated by{

Syml S∨ : l ∈
[
0, 1

2d
) }

but Hori–Tong calculate the Witten index of the corresponding gauge theory to be (1
2d− 1), not

1
2d. It would be very interesting to understand why these two approaches seem to give different
answers.

If we make r > 2 then we can presumably make some mathematical progress using Fonarev’s
Lefschetz exceptional collections on Gr(r, d) [Fon11], but the discrepancy with Hori–Tong’s cal-
culation becomes even worse.

4.2 With the superpotential

We’ll now explain how to modify the constructions of the previous section when we add in the
superpotential W , and the non-trivial R-charge described in Example 2.4. Specifically, we’ll show
that we have an embedding

Db(X1,W ) ↪→ Db(X2,W ).

The construction of this embedding follows closely our construction of the embedding Db(X1) ↪→
Db(X2). Suppose we have some matrix factorization E ∈ Db(X,W ) on the ambient Artin stack.
The underlying vector bundle of E must be a direct sum of shifts of the bundles Tl,m, since these
are the only vector bundles on X. To define the analogue of the window G, we just restrict which
vector bundles Tl,m we are allowed to use. Namely, we define

GW ⊂ Db(X,W )

to be the full subcategory whose objects are (homotopy equivalent to) matrix factorizations
whose underlying vector bundles are direct sums of shifts of the vector bundles Tl,m, where
l ∈ [0, 3) and m ∈ [0, 7), as in (4.2). We then have the following.

Proposition 4.9. The restriction functor

ι∗1 : GW → Db(X1,W )

is an equivalence, and the restriction functor

ι∗2 : GW → Db(X2,W )

is fully faithful.
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Proof. This follows from Proposition 4.1, using the arguments from [Seg11, § 3.1]. Fully-faithfulness
is straightforward; we can use the proof of [ibid., Lem. 3.4] verbatim. The key point is that mor-
phisms on any Landau–Ginzburg model (X,W ) can be computed, via a spectral sequence, from
morphisms on the model (X, 0).

The essential surjectivity of ι∗1 follows from Lemma 4.10 below, since we proved in Lemma 4.6
that any sheaf on X1 can be resolved by vector bundles from the set (4.1), and this resolution
can evidently be chosen to be C∗R-equivariant.

Lemma 4.10. Let (X,W ) be a LG B-model, and let E0, . . . , Ek be a collection of C∗R-equivariant
vector bundles on X such that

Ext>0
X (Ei, Ej) = 0, ∀i, j

in the ordinary derived category of X (i.e. ignoring the R-charge grading). Now let

(E , dE) ∈ Db(X,W )

be an object such that the underlying sheaf E has a finite C∗R-equivariant resolution by copies of
shifts of the bundles Ei. Then (E , dE) is equivalent to a matrix factorization whose underlying
vector bundle is a direct sum of copies of shifts of the Ei.

Proof. This is proved in [Seg11, proof of Lem. 3.6]. It’s shown there that it’s possible to perturb
the differential in the resolution of E until it becomes a matrix factorization for W which is
equivalent to (E , dE).10

We define the category

BBr(X2,W ) ⊂ Db(X2,W )

to be the image of GW under ι∗2, and we claim that this is the correct category of B-branes for
the LG model (X2,W ).

This concludes our discussion of the second equivalence Ψ2.

5. The Pfaffian side

In this final section we complete our proof that Db(Y1) ∼= Db(Y2) by establishing the equivalence
Ψ3. To do this we construct an embedding

Db(Y2) ↪→ Db(X2,W )

whose image is the subcategory BBr(X2,W ) defined in the previous section.

Recall that X2 is the Artin stack

X2 =
[ {

(x, p) ∈ Hom(S, V )⊕Hom(V,∧2S) : p 6= 0
}/

GL(S)
]

and that it is equipped with the superpotential

W (x, p) = p ◦A ◦ ∧2x,

where A : ∧2V → V is a surjection satisfying Assumption 1.1 that we’ve fixed throughout the
paper. For this section, we’ll let π denote the projection

π : X2 → PHom(V,∧2S) ∼= P6.
(x, p) 7→ [p]

10The proof in that paper is stated for the case that E is a vector bundle, but it works for sheaves without
modification. The argument is also independent of which dg model we choose for Perf(X,W ).
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This makes X2 into a Zariski locally-trivial bundle of stacks with fibre

F :=
[

Hom(S, V )
/

SL(S)
]
. (5.1)

To see this, observe that the preimage of a standard affine chart A6 ⊂ P6 is the stack

X2|A6 =
[

Hom(S, V )× C∗ × A6
/

GL(S)
]

∼=
[

Hom(S, V )
/

SL(S)
]
× A6.

For another point-of-view, we can consider X2 as a vector bundle

q2 : X2 → P

over the stack

P =
[
∧2S⊕7 − {0}

/
GL(S)

]
(this was mentioned briefly in the proof of Lemma 4.3). Then we can factor π as δ ◦ q2, where δ
is the forgetful map

δ : P → P6

sending P to its underlying scheme. The map δ is a Zariski locally-trivial bundle of stacks with
fibre B SL2.

Note that the C∗R action on X2 preserves each fibre of π, and if we write a fibre using the
atlas (5.1) then the action on F is just dilation (with weight 1). This is because letting C∗R act
with weight 2 on p is equivalent to letting it act with weight 1 on x, up to the action of GL(S).

5.1 Heuristics and strategy

Fix a point [p] ∈ P6. On the fibre X2|[p] ∼= F over this point the superpotential is a quadratic
form:

Wp(x) := p ◦A ◦ ∧2x.

Since the C∗R action preserves the fibre, the pair (F,Wp) is a LG B-model in its own right. If the
quadratic form Wp were non-degenerate then our discussion of Knörrer periodicity in Section 3.2
would lead us to study SL(S)-invariant, maximally isotropic subspaces

Mp ⊂ Hom(S, V )

in order to understand Db(F,Wp). In fact Wp is degenerate, but previous experience [ASS12]
suggests that this is still a sensible thing to do.

To ensure SL(S)-invariance, we need to take Mp = Hom(S,Lp), where Lp ⊂ V is maximally
isotropic for the 2-form

ωp := p ◦A
on V . The rank of this 2-form is 6 for a generic [p], and it drops to 4 precisely when [p] ∈ Y2.
Since A is generic, it never drops to 2. Thus if [p] /∈ Y2 then a maximal Lp has dimension 4 and
a maximal Mp dimension 8, but if [p] ∈ Y2 then dimLp jumps up to 5 and dimMp to 10.

In fact, we will restrict attention to maximally isotropics Mp for [p] ∈ Y2, for the reasons we
now explain. Our results from the previous section (see in particular Remark 4.7) suggest that
we should focus on the ‘window’ subcategory

BBr(F,Wp) ⊂ Db(F,Wp)

consisting of (objects isomorphic to) matrix factorizations built only out of the three vector
bundles O, S and Sym2 S. This category is, in some sense, the fibre of the category BBr(X2,W )
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at the point [p]. Consequently we only care about those maximally isotropics Mp that define
objects in the subcategory BBr(F,Wp).

The sheaf OMp has a Koszul resolution with underlying vector bundle

∧•
(

Hom(S, V/Lp)
∨). (5.2)

Perturbing the Koszul differential as in Lemma 4.10, we find that OMp ∈ Db(F,Wp) is equivalent
to a matrix factorization with this same underlying vector bundle. Then we use the formula for
the exterior algebra of a tensor product [Wey03, Cor. 2.3.3] to find that the representations of
SL(S) occurring in (5.2) are Symt S, for

0 6 t 6 dim(V/Lp).

To get OMp ∈ BBr(F ,Wp) it appears that we need to have dim(V/Lp) = 2, and hence [p] ∈ Y2. So
if we believe this heuristic argument, the category BBr(X2,W ) is concentrated over the Pfaffian
locus Y2.

In the spirit of Section 3.2, a continuous choice of Lp for all [p] ∈ Y2 will give us a functor
Db(Y2)→ BBr(X2,W ) sending O[p] to OMp . We claim that this functor is in fact fully faithful.
This is essentially equivalent (see Remark 3.3) to the claim that each object OMp behaves like
the point sheaf O[p], i.e.

Hom•Db(X2,W )(OMp ,OMp) ∼= Hom•Db(Y2)(O[p],O[p]),

or alternatively to the claim that the whole family OM behaves like the structure sheaf OY2 , i.e.

π∗RHomX2(OM ,OM ) ∼= OY2 .

A suitable version of this claim will be proved in Proposition 5.3, but let’s briefly discuss why
it is true. If each quadratic form Wp were non-degenerate then it would be standard Knörrer
periodicity, and each object OMp would be point-like in the fibrewise directions. However since
Wp is degenerate this is not true: viewed as an object on (F,Wp) the curved dg-sheaf OMp is
not point-like – it in fact looks like the skyscraper sheaf along the kernel of Wp. Fortunately
this calculation is misleading, because if we view OMp as an object on (X2,W ) then we must
also take account of the derivatives of W in the directions transverse to the fibre. As we shall
see, these transverse directions exactly cancel the degenerate directions of Wp, leaving a suitably
point-like object.

Next we face another issue, which is that the spaces Lp, and hence Mp, can be chosen locally
on Y2 but not globally. One approach to overcoming this would be to take local choices and
glue them to give a global embedding. Instead we replace each OMp with an equivalent object
OΓp ∈ Db(F,Wp) which involves no choices and thus is easy to globalize to a family Γ. We define
Γ in Definition 5.5 and show in Proposition 5.6 that OMp is equivalent to the new object OΓp .

In Section 5.5 we fill in the final details that Γ gives us an embedding Db(Y2)→ Db(X2,W )
whose image is BBr(X2,W ). We conclude with some remarks on varying the dimensions of S
and V , and on homological projective duality.

5.2 The critical locus

We start by analyzing the critical locus of W on X2. This means we take the critical locus of W
on the atlas

Hom(S, V )×
(
Hom(V,∧2S)− {0}

)
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and form the stack quotient of it by GL(S).11

Proposition 5.1. Let x ∈ Hom(S, V ) and p ∈ Hom(V,∧2S)−{0}. Then (x, p) is a critical point
of W if and only if Im(x) ⊂ kerωp and rank(x) 6 1.

Proof. In the x-directions W is a quadratic form, so its derivatives vanish exactly along its kernel,
which is Hom(S, kerωp). In the p-directions W is linear, so its derivatives vanish exactly when
W (x, q) = 0 for all q ∈ Hom(V,∧2S). Thus (x, p) is a critical point of W if and only if Im(x)
is contained in kerωp and is isotropic for all ωq as q varies over Hom(V,∧2S). Now we need
only argue that these imply rank(x) 6 1. If rank(ωp) = 6 then dim(kerωp) = 1, so rank(x) 6 1
already, but if rank(ωp) = 4 we need a further argument.

Consider the locus of ω ∈ Hom(∧2V,∧2S) for which ω has rank 4 as a 2-form on V . By
[Har92, Ex. 20.5], a line ω+ tξ is tangent to this locus if and only if kerω is isotropic for ξ; that
is, the tangent space to this locus is the kernel of the natural map

Hom(∧2V,∧2S) → Hom(∧2 kerω,∧2S).
ξ 7→ ξ|kerω

Thus the normal space to this locus in Hom(∧2V,∧2S) embeds into Hom(∧2 kerω,∧2S), and
since both have dimension 3 they are isomorphic.

Now by Assumption 1.1, A gives an embedding Hom(V,∧2S) ↪→ Hom(∧2V,∧2S) which is
transverse to the rank-4 locus, so the normal space to the cone on Y2 under this embedding is
identified with Hom(∧2 kerωp,∧2S) in the same way. In particular, for every 2-form η on kerωp
there is a q ∈ Hom(V,∧2S) such that ωq|kerωp = η. Now if Im(x) ⊂ kerωp were 2-dimensional
there would be an η for which it was not isotropic, hence a q such that Im(x) was not isotropic
for ωq, so (x, p) would not be a critical point of W . Thus if (x, p) is a critical point of W then
rank(x) 6 1 as claimed.

We now focus on the part of the critical locus that lies over the Pfaffian Calabi–Yau Y2. Let

K ⊂ OY2 ⊗ V

be the rank-3 bundle whose fibre over [p] ∈ Y2 is

Kp := kerωp ⊂ V.

In the proof of the previous proposition we saw that dW induces an isomorphism

dW : NY2/P6 → Hom(∧2K,∧2S) (5.3)

of vector bundles over Y2. Notice that although S is not really a vector bundle on P6 (it’s a
vector bundle on the stack P), its determinant ∧2S really is a legitimate line bundle on P6 – in
fact it’s OP6(1).

We abuse notation slightly and let

Hom(S,K) ⊂ Hom(S, V )×
(
Hom(V,∧2S)− {0}

)
denote the subvariety

Hom(S,K) = { (x, p) ∈ X2 : [p] ∈ Y2, x ∈ Hom(S,Kp) } .

11The result is independent of our choice of atlas. If [Z/G] is a quotient stack with Z smooth, and W is a G-
invariant function on Z, then at any point z ∈ Z the derivative dW |z defines a closed element of the cotangent
complex Lz = [T∨Z → g∨]. We’re considering the substack where this element is zero, and this is invariant since
the cotangent complex is an invariant of the atlas up to quasi-isomorphism.
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This is a vector bundle over the punctured affine cone over Y2, and [ Hom(S,K) / GL(S) ] is a
substack of X2 whose fibre over a point [p] ∈ Y2 is

[ Hom(S,Kp) / SL(S) ] ⊂ [ Hom(S, V ) / SL(S) ] = F.

Alternatively, we may view [ Hom(S,K) / GL(S) ] as a vector bundle over the stack P.

Lemma 5.2. The underlying scheme of [ Hom(S,K) / GL(S) ] is the total space of the vector
bundle Hom(∧2S,∧2K) over Y2. The underlying scheme of Crit(W )|Y2 is Y2.

The ‘underlying scheme’ of a stack is the universal scheme that receives a map from that
stack; for a quotient stack this is simply the scheme-theoretic quotient.

Proof. As we just mentioned, the fibre of [ Hom(S,K) / GL(S) ] over a point [p] ∈ Y2 is the stack[
Hom(S,Kp)

/
SL(S)

]
. The scheme underlying this is the scheme-theoretic quotient

Hom(S,Kp) / SL(S) = Spec
(
OHom(S,Kp)

)SL(S)
.

By [KP96, § 8.4] we have a closed embedding

Hom(S,Kp) / SL(S) ↪→ Hom(∧2S,∧2Kp)

which is an isomorphism since both spaces have dimension 3. The first statement of the lemma
follows immediately.

By Proposition 5.1, Crit(W )|Y2 is the substack of [ Hom(S,K) / GL(S) ] where x has rank 1.
The image of this substack in the underlying scheme is the zero section.

One can argue similarly that the underlying scheme of the whole of Crit(W ) is P6, but we
shall not use this fact.

5.3 Point-like objects from maximally isotropic subspaces

We now show that maximally isotropic subspaces give point-like objects, as we outlined in § 5.1.
Recall that, roughly, we want to find a family Lp of maximally isotropic subspaces for the family
of (rank 4) 2-forms ωp over Y2. Then we’re going to look at the corresponding maximally isotropic
subspaces Mp = Hom(S,Lp) for the associated family of quadratic forms. We don’t know that
we have such a family L globally on Y2, but we can find one Zariski locally (see Remark 5.4
below).

Let’s begin by stating this local data precisely. Suppose we have an affine open set U ⊂ P6

such that over the corresponding open set Y ′ := Y2 ∩ U in Y2 we can find a bundle

L ⊂ OY ′ ⊗ V

of maximally isotropic subspaces for the family of 2-forms ωp. As we did for Hom(S,K) above,
let us use the notation

M := Hom(S,L) ⊂ Hom(S, V )×
(
Hom(V,∧2S)− {0}

)
to denote the subvariety

M := Hom(S,L) =
{

(x, p) : [p] ∈ Y ′, x ∈ Hom(S,Lp)
}
.

Notice that M is preserved by both GL(S) and C∗R.

The variety M is a vector bundle over the punctured affine cone on Y2, and its fibres are
maximally isotropic subspaces Mp for the family of quadratic forms Wp. The stack [M / GL(S) ]

23



Nicolas Addington, Will Donovan and Ed Segal

is a vector bundle over the stack P|Y2 , which is like Y2 but with SL2 isotropy groups at each
point.

Since M lies in the zero locus of W , the skyscraper sheaf OM is a curved dg-sheaf on the LG
B-model (X2|U ,W ). For each point [p] ∈ Y2, it restricts to give a curved dg-sheaf OMp on the
fibre (F ,Wp). As discussed in § 5.1, we claim that these objects are ‘point-like’ in the sense that
they behave like the skyscraper sheaves O[p] ∈ Db(Y2). This follows immediately from a slightly
stronger claim, which is that the skyscraper sheaf OM along the whole family behaves like the
structure sheaf on OY2 . This claim is our next proposition.

Recall that π : X2 → P6 is the projection sending (x, p) to [p] ∈ P6. In our local situation, it
is a map π : X2|U → U .

Proposition 5.3. Suppose we have U , Y ′, L and M as above. Then the natural map

OY ′ −→ π∗RHomX2|U (OM ,OM )

is a quasi-isomorphism.

Proof. The natural map in question is the composition of the natural map OY ′ → π∗OM with
the pushdown of the identity for OM . This is necessarily non-zero everywhere, so it’s enough to
prove that π∗RHomX2|U (OM ,OM ) is quasi-isomorphic to OY ′ .

The curved dg-sheaf OM is the skyscraper sheaf along a smooth subvariety lying in the zero
locus of W . For a curved dg-sheaf of this form, it’s easy to show that12

RHomX2|U (OM ,OM ) ∼= (∧•NM/X2
, dW ); (5.4)

see for example [ASS12, §A.4]. So we take the sheaf of normal polyvector fields (which would be
the correct answer if W were zero) and perturb it by contracting with the section

dW : OM → N∨M/X2
,

which is well-defined since W vanishes along M . This is not a transverse section, in the sense
that its intersection with the zero section is not transverse. However we will split it into two
pieces, one of which is transverse and the other of which we analyzed earlier.

Since M is a vector bundle over (the punctured affine cone over) Y ′, we have a short exact
sequence

0→ π∗N∨Y ′/U → N
∨
M/X2|U → Hom(S, V/L)∨ → 0. (5.5)

Since the open set U is affine, the total space of M is also affine, so the sequence (5.5) splits:

N∨M/X2
∼= π∗N∨Y ′/U ⊕Hom(S, V/L)∨.

Write dW = (dW )1 ⊕ (dW )2 with respect to this splitting. Then the right-hand side of (5.4) is
a tensor product of the Koszul complexes associated to (dW )1 and (dW )2.

The section (dW )2 consists of the fibre-wise derivatives of the family of quadratic forms Wp, so
as in the proof of Proposition 5.1 it vanishes exactly along the kernel Hom(S,K) of the family of
quadratic forms. Since dim Hom(S,K) = dim Hom(S,L)−dim Hom(S, V/L)∨ we see that (dW )2

is transverse, so the associated Koszul complex is exact, and we may replace it with OHom(S,K).

Thus RHomX2|U (OM ,OM ) is quasi-isomorphic to the Koszul complex of the section

(dW )1 : OHom(S,K) → π∗N∨Y ′/U

12We neglect some shifts in R-charge which will be irrelevant.
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on the total space of Hom(S,K) over Y ′. This section is not transverse, but what we actually care
about is π∗RHomX2|U (OM ,OM ), which we can compute by first pushing down to the underlying
scheme of [ Hom(S,K) / GL(S) ]. By Lemma 5.2 this is the total space of the vector bundle
Hom(∧2S,∧2K) over Y ′ ⊂ Y2, and now the section (dW )1 is essentially the transpose of (5.3).
By this we mean: the transpose of (5.3) is a map of vector bundles Hom(∧2S,∧2K) → N∨Y2/P6 ,

and the corresponding section of the pullback of N∨Y2/P6 to the total space of Hom(∧2S,∧2K)|Y ′
is (dW )1. Since (5.3) is an isomorphism, this is a transverse section of the pullback of N∨Y ′/P6 that

vanishes along the zero section of Hom(∧2S,∧2K)|Y ′ , so its Koszul complex is quasi-isomorphic
to the structure sheaf of the zero section, and we conclude that

π∗RHomX2|U (OM ,OM ) ∼= OY ′ .

Remark 5.4. A bundle L ⊂ OY2 ⊗V of maximally isotropic subspaces for the 2-forms ωp may be
constructed Zariski-locally on Y2 as follows. Fix a point [x] ∈ Y1; this determines a 2-dimensional
subspace Im(x) ⊂ V which is isotropic for all ωp. Then over the Zariski open set where Kp ∩
Im(x) = 0 we can take Lp = Kp + Im(x) ⊂ V . The complement of this open set, i.e. the locus
where Kp ∩ Im(x) 6= 0, is a curve in Y2. We remark that this correspondence between points in
Y1 and curves in Y2 is the essential ingredient of [BC06].

We do not know how to find such a bundle L over the whole of Y2, however, and indeed
we suspect that no such global bundle exists. Consequently, we cannot immediately use the
construction of Proposition 5.3 to give a global generating object. Fortunately we know another
equivalent construction, one which does work globally, as we explain in the next section.

5.4 Another construction of point-like objects

Instead of using a maximally isotropic subbundle, we will use the following subspace:

Definition 5.5. Let Γ ⊂ X2 be the closed substack consisting of points (x, p) where [p] ∈ Y2,
and the map

x̄ : S → V/Kp

has rank at most 1.

Γ is a flat family of stacks over Y2, as its fibres are all isomorphic. Observe that W vanishes
along Γ, and that Γ is a cone in each fibre of π, hence is C∗R-invariant; therefore OΓ is a curved
dg-sheaf on X2, restricting on each fibre to give a curved dg-sheaf OΓp on F.

As we shall show momentarily, the object OΓp is (approximately) equivalent to OMp , where
Mp is a maximally isotropic subspace of F as in the previous section. The proof is a little involved,
but let us first remark why the result is not so surprising.

The quadratic formWp on Hom(S, V ) descends to a non-degenerate oneW ′p on Hom(S, V/Kp),
so we have a pullback functor

Db(Hom(S, V/Kp),W
′
p)→ Db(Hom(S, V ),Wp).

By definition, Γp is the preimage of the locus of rank-1 matrices in Hom(S, V/Kp), and Mp the
preimage of the maximally isotropic subspace

Hom(S,Lp/Kp) ⊂ Hom(S, V/Kp),

where Lp/Kp is a Lagrangian in V/Kp. Consequently, both OΓp and OMp are pullbacks of objects
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in Db(Hom(S, V/Kp),W
′
p).

13 But W ′p is non-degenerate, so by Knörrer periodicity this category
is equivalent to the derived category of a point. It is hardly surprising, then, that two natural
objects in this category turn out to be isomorphic.

Proposition 5.6. Fix [p] ∈ Y2. Let Lp ⊂ V be a maximally isotropic subspace for the 2-form
ωp = p ◦A. Then the curved dg-sheaf OΓp is homotopy-equivalent to the curved dg-sheaf

OMp ⊗ detS ⊗ det(Lp/Kp)
−1[−1]

in QCohdg(F,Wp).

The term det(Lp/Kp)
−1 is a trivial line bundle on F, but will be necessary later when we let

p vary.

Recall from Section 2.2 that QCohdg(F,W ) is the dg-category of curved dg-sheaves localized
at ‘acyclic’ objects, and that Perf(X,W ) is the full subcategory of objects that are equivalent to
matrix factorizations. The curved dg-sheaf OMp certainly lies in Perf(F,Wp), so this proposition
proves incidentally that OΓp ∈ Perf(F,Wp) too.

Proof. Consider the locus

Σp := { x ∈ Hom(S, V ) : Wp(x) = 0, dim(Lp + Im(x)) 6 6 } .

It contains both Mp and Γp. It’s an intersection of two quadrics in Hom(S, V ): one cut out by
Wp and the other by the determinant of the 2× 2 matrix

S
x−→ V → V/Lp.

In fact it is a complete intersection: Wp is a quadric of rank 10, hence is irreducible, and the
second quadric has rank at most 4, hence is different from Wp, so their intersection is complete.

Thus OΣp is the restriction to {Wp = 0} of a perfect complex on F, and hence it is a con-
tractible curved dg-sheaf by § 2.3(iv). So to prove the lemma it is enough to show the equivalence
of the ideal sheaves

IΓp/Σp
∼= IMp/Σp

⊗ detS ⊗ det(Lp/Kp)
−1[1] (5.6)

as curved dg-sheaves on (F,Wp).

We take the following (SL(S)× C∗R)-equivariant resolution of singularities of Σp:

Σ̃p :=
{

(x, l,H) ∈ Hom(S, V )× PS ×Gr(6, V ) : (Lp + Imx) ⊂ H, x(l) ⊂ H⊥
}
,

with the evident projection map

φ1 : Σ̃p → Σp.

Here the orthogonal H⊥ is taken with respect to the pairing ωp, and since Lp ⊂ H we have
H⊥ ⊂ L⊥p = Lp ⊂ H. To see that Σ̃p is smooth, observe that the projection

φ23 : Σ̃p → PS × P(V/Lp) ∼= P1 × P1

defined by φ23(x, l,H) = (l,H/Lp) is a vector bundle: the fibre is the 10-dimensional vector space{
x ∈ Hom(S,H) : x(l) ⊂ H⊥

}
.

13We assume for this rough argument that both of these curved dg-sheaves are equivalent to matrix factorizations.
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To see that φ1 is a resolution of singularities, observe that if x ∈ Σp is generic in the sense that
Im(x) 6⊂ Lp, then the fibre φ−1

1 (x) is a single point: clearly H is uniquely determined, but also
x−1(H⊥) must be 1-dimensional, and this determines l.

Now we analyze the non-generic fibres of φ1, over points x where Im(x) ⊂ Lp. There are three
cases:

– dim(Im(x) + Kp) = 5. Then x has rank 2. We can choose H freely, and then we must set
l = x−1(H⊥). Thus the fibre is P(V/Lp) ∼= P1.

– dim(Im(x) + Kp) = 4. The fibre has two irreducible components: either H = (Im(x) +
Kp)

⊥ and we can choose l freely, or l = x−1(Kp) and we can choose H freely. Thus the
fibre is two copies of P1 meeting at a point: precisely, PS meeting P(V/Lp) at the point
(x, x−1(Kp), (Im(x) +Kp)

⊥).

– dim(Im(x) + Kp) = 3. We can choose both l and H freely, so the fibre is PS × P(V/Lp) ∼=
P1 × P1.

Consequently Rφ1∗OΣ̃p
= OΣp , i.e. Σp has rational singularities.

Next we consider the preimage of Mp in Σ̃p:

M̃p :=
{

(x, l,H) ∈ Σ̃p : Im(x) ⊂ Lp
}
.

This is the union of all the non-generic fibres. The projection φ23 makes M̃p into a rank-9 vector
bundle over P1 × P1, so M̃p is smooth. From the above analysis of the fibres we know that
Rφ1∗OM̃p

= OMp . Also M̃p ⊂ Σ̃p is a divisor, and it’s the zero locus of the map

S/l = detS ⊗ l−1 x−→ H/Lp

which is a section of the line bundle φ∗23O(−1,−1)⊗ detS−1. So we have an exact sequence

0→ φ∗23O(1, 1)⊗ detS[−1]→ OΣ̃p
→ OM̃p

→ 0.

The R-charge shift occurs because the map x has R-charge 1. Applying Rφ1∗ to the above exact
sequence gives us

Rφ1∗φ
∗
23O(1, 1)⊗ detS = IMp/Σp

[1].

The final variety we consider is the proper transform of Γp in Σ̃p:

Γ̃p :=
{

(x, l,H) ∈ Σ̃p : x(l) ⊂ Kp

}
.

The projection φ23 makes Γ̃p into a rank-9 vector bundle over P1 × P1, so it too is smooth, and
a similar inspection of the fibres of φ1 yields Rφ1∗OΓ̃p

= OΓp . The subvariety Γ̃p ⊂ Σ̃p is also a
divisor. It is the zero locus of the map

l
x−→ (H⊥/Kp) ∼= (H/Lp)⊗ detS−1 ⊗ det(Lp/Kp)

(to see the equality here note that the 2-form ωp takes values in detS, so H⊥ is the kernel of the
map V → H∗ ⊗ detS induced by ωp, from which it follows that det(H⊥) = detH ⊗ detS−1).
Thus Γ̃p is cut out by a section of the line bundle

φ∗23O(1,−1)⊗ detS−1 ⊗ det(Lp/Kp)

having R-charge 1. We take the exact sequence

0→ φ∗23O(−1, 1)⊗ detS ⊗ det(Lp/Kp)
−1[−1] −→ OΣ̃p

−→ OΓ̃p
→ 0
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and apply Rφ1∗ to get

Rφ1∗φ
∗
23O(−1, 1) = IΓp/Σp

⊗ detS−1 ⊗ det(Lp/Kp)[1].

Next, take the exact sequence of bundles on PS × P(V/Lp)

0→ O(−1, 1)→ O(0, 1)⊗ S → O(1, 1)⊗ detS → 0

and apply Rφ1∗φ
∗
23 to get an exact triangle on Hom(S, V ):

IΓp/Σp
⊗ detS−1 ⊗ det(Lp/Kp)[1] −→ Rφ1∗φ

∗
3O(1)⊗ S −→ IMp/Σp

[−1],

where φ3 : Σ̃p → P(V/Lp) is projection onto the third component. Thus the claim (5.6) reduces
to the claim that Rφ1∗φ

∗
3O(1) is a contractible curved dg-sheaf.

To prove this last claim, take the exact sequence of sheaves on P(V/Lp)

0→ O → O(1)→ OH0/Lp
→ 0,

where OH0/Lp
is the skyscraper sheaf at some point H0/Lp ∈ P(V/Lp), and apply Rφ1∗φ

∗
3.

Observe that φ3 is flat since φ23 is. We get an exact triangle on Hom(S, V ):

OΣp → Rφ1∗φ
∗
3O(1)→ Rφ1∗φ

∗
3OH0/Lp

.

We know that the first term is trivial in Db(F,Wp), so to show that the second is trivial it
is enough to show that the third is. Analyzing fibres again we find that Rφ1∗φ

∗
3OH0/Lp

is the
structure sheaf of the locus

{ x ∈ Hom(S, V ) : Wp(x) = 0, Im(x) ⊂ H0 } .

This is the complete intersection of the quadric cut out by Wp with the two hyperplanes, so its
structure sheaf is indeed a contractible curved dg-sheaf (by § 2.3(iv) again).

Now suppose we have a family of maximally isotropic subspaces, as in Proposition 5.3.

Corollary 5.7. Let U ⊂ P6 be a Zariski open set, let Y ′ = U ∩ Y2, and let

j : X2|′Y ↪→ X2|U
denote the inclusion. Assume that over Y ′ we have a bundle L ⊂ OY ′⊗V of maximally isotropic
subspaces for ω, and let M = Hom(S,L) ⊂ X2|Y ′ be the corresponding bundle of maximally
isotropic subspaces for W . Then (possibly after shrinking U) we have a homotopy-equivalence
of curved dg-sheaves

OΓ|Y ′ ' j∗
(
OM ⊗ detS ⊗ det(L/K)−1

)
[−1]

in QCohdg(X2|U ,W ).

Proof. Assume U is small enough that X2|U ∼= F × U , so X2|Y ′ = F × Y ′. Then the proof of
Proposition 5.6 works perfectly well over the base Y ′. The only point to note is that we also need
to pick a bundle H0 of co-isotropics containing L: we can certainly do this if U is small enough.
Consequently these objects are equivalent as curved dg-sheaves on (X2|Y ′ ,W ), and applying the
functor j∗ we deduce the statement of the corollary.

So OΓ gives us a global version of our generating object, but in local patches we can continue
to work with maximally isotropic subspaces.

Remark 5.8. A priori it might seem simpler to just use OΓ, and ignore the maximally isotropics
entirely. Unfortunately, since Γ is singular, it is prohibitively difficult to do the calculation of
Proposition 5.3 directly for OΓ.
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5.5 Completing the proof

For every [p] ∈ Y2, we have a curved dg-sheaf OΓp supported on the fibre over p, and these fit
into a global family OΓ. We want to consider a functor

F : Db(Y2)→ Db(X2,W )

which sends each O[p] to the corresponding OΓp , i.e. the functor which has OΓ as its Fourier–
Mukai kernel. From the results in the previous two sections we know that each OΓp behaves
like the corresponding skyscraper sheaf O[p] ∈ Db(Y2), and this more-or-less guarantees that F
will be an embedding (cf. Remark 3.3). In this section we fill in the remaining details in this
argument and then show that the image of this embedding is exactly the category BBr(X2,W )
from Section 4.

First we give the definition of F in full. We consider the diagram

Γ X2|Y2 X2

Y2 P6

i

π̂

j

π π

j

and define

F := j∗i∗π̂
∗ : Db(Y2)→ [QCohdg(X2,W )]

where [QCohdg(X2,W )] denotes the homotopy category of QCohdg(X2,W ). Since Γ is flat over
Y2, we see that F sends O[p] to OΓp , and it sends OY2 to OΓ.

We claim that F lands in the subcategory Db(X2,W ) ⊂ [QCohdg(X2,W )], i.e. everything in
the image is homotopy-equivalent to a matrix factorization. More importantly, F in fact lands
in the ‘window’ subcategory

BBr(X2,W ) ⊂ Db(X2,W ).

Recall from Section 4 that this is the subcategory where we only allow (objects homotopy-
equivalent to) matrix factorizations built out of a certain set of vector bundles, namely the ones
corresponding to the ‘rectangle’ (4.1) in the irreducible representations of GL(S).

Proposition 5.9. For all E ∈ Db(Y2), we have FE ∈ BBr(X2,W ).

Proof. It’s enough to prove the statement when E is a sheaf. In that case FE is a sheaf on X2,
which we can write as

FE = j∗i∗π̂
∗E = j∗(OΓ ⊗ π∗E).

The sheaf OΓ on X2|Y2 has an Eagon–Northcott resolution (e.g. [Wey03, § 6.1.6])

0→ ∧4(V/K)∨ ⊗ Sym2 S(1)→ ∧3(V/K)∨ ⊗ S(1)→ ∧2(V/K)∨(1)→ O → OΓ → 0,

and we can make this C∗R-equivariant by inserting the necessary shifts. Consequently, the sheaf
FE has a C∗R-equivariant resolution on X2 of the form

0→ π∗F3 ⊗ Sym2 S → π∗F2 ⊗ S → π∗F1 → π∗F0 → FE → 0

where F0, . . . ,F3 are sheaves on P6, supported on Y2. Every sheaf on P6 can be resolved by the
line bundles O, . . . ,O(6), so FE has a resolution by vector bundles lying in our rectangle (4.1).
Now Lemma 4.10 implies that FE lies in the subcategory BBr(X2,W ) ⊂ Db(X2,W ).
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Next we need to establish that F has a right adjoint. The functor

(ji)∗ : Db(Γ)→ Db(X2,W )

has a right adjoint, namely

(ji)! = RHomX2(OΓ,−) : Db(X2,W )→ Db(Γ).

Note that this statement is local, and that locally OΓ generates Db(Γ), so to prove the adjunction
it’s sufficient to observe that

RHomX2((ji)∗OΓ,F) = RHomΓ(OΓ,RHomX2(OΓ,F))

holds tautologically for any F ∈ Db(X2,W ).

The right adjoint to the functor

π̂∗ : Db(Y2)→ Db(Γ)

should be π̂∗, but unfortunately Γ is not proper (not even equivariantly), so π̂∗ produces quasi-
coherent sheaves in general. Fortunately, we have the following.

Lemma 5.10. For E ∈ Db(X2,W ), the complex of sheaves π∗RHomX2(OΓ, E) has bounded and
coherent homology sheaves. Consequently

FR := π∗RHomX2(OΓ,−) : Db(X2,W )→ Db(Y2)

is right adjoint to F .

Proof. The homology of RHomX2(OΓ, E) is a coherent sheaf whose support lies in the critical
locus Crit(W ) of W (see § 2.3(iii)), and also in π−1(Y2). From Lemma 5.2, the map

π : Crit(W )|Y2 → Y2

is just passage to the underlying scheme, so if F is a sheaf supported in Crit(W ) then (locally in
Y2) we calculate π∗F by just taking SL(S)-invariants. If Y ′ ⊂ Y2 is a sufficiently small open set,
then over π−1(Y ′) we can find a finite presentation of the homology of RHomX2(OΓ, E). Taking
SL(S)-invariants, which is an exact functor, gives us a finite presentation of the homology of
π∗RHomX2(OΓ, E).

From their definitions, both F and FR are ‘local’ over P6, i.e. linear over the structure sheaf
of P6. Consequently if U ⊂ P6 is an open set then we have functors

Db(Y2 ∩ U) Db(X2|U ,W ).
F

FR

Proposition 5.11. The functor F is fully faithful.

Proof. We will show that for any E ∈ Db(Y2), the unit of the adjunction

E → FRFE

is an isomorphism. Then the composition FRF is naturally isomorphic to the identity functor,
and so F must be an embedding.

This statement is local in Y2, so we can restrict to an affine open subset U ⊂ P6 and corre-
sponding open set Y ′ = Y2 ∩ U . Then it’s enough to check the statement on the structure sheaf
OY ′ , since this generates Db(Y ′). So the required statement is that

F : OY ′ → π∗RHomX2|U (OΓY ′ ,OΓY ′ )
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is a quasi-isomorphism.

By making U smaller if necessary, we may assume that we have a bundle of maximally
isotropics L ⊂ VY ′ , and an associated bundle M = Hom(S,L) ⊂ X2|Y ′ . Then by Proposition 5.6
we may replace OΓY ′ with OM , up to a shift and twisting by a line bundle. Then

π∗RHomX2|U (OΓY ′ ,OΓY ′ )
∼= OY ′

by Proposition 5.3. Finally, F must be an isomorphism on homology because it must send the
constant section 1 to itself (it preserves identity arrows), and it is linear over sections of OP6 .

Theorem 5.12. The functor

F : Db(Y2)→ BBr(X2,W )

is an equivalence.

Proof. By Proposition 5.11 and Proposition 5.9 we have that F is an embedding from Db(Y2)
into BBr(X2,W ), and by Lemma 5.10 it has a right adjoint. We also know that BBr(X2,W ) is
equivalent to Db(Y1), by composing our equivalences Ψ1 and Ψ2. However Y1 is Calabi–Yau and
connected, so BBr(X2,W ) cannot have a non-trivial admissible subcategory, and we deduce the
result.

So the equivalence Ψ3 holds. This last step of the argument is rather unsatisfactory in that
we have to appeal to our other two equivalences, rather than giving a self-contained proof. But
presumably it is possible to prove directly that BBr(X2,W ) is Calabi–Yau and connected – in
particular the Calabi–Yau property should follow by an argument along the lines of [LP11, § 4].

Remark 5.13. We conclude with some remarks about how our results adapt when we change the
dimensions of S and V to r and d respectively.

– r = 2, d = 5. In this case Y1 is an elliptic curve and Y2 is the dual elliptic curve. We have
a very similar definition of BBr(X2,W ) (see Remark 4.8), we have equivalences Db(Y1) ∼=
Db(X1,W ) ∼= BBr(X2,W ) as before, and the methods of this section can be used to show
that Db(Y2) ∼= BBr(X2,W ). In fact this case is rather easier than the d = 7 case because
it’s very easy to show that we have a global maximally isotropic subbundle L on Y2, and so
we don’t need any alternative construction as in Section 5.4.

– r = 2, d = 6. In this case Y1 is a K3 surface and Y2 is a Pfaffian cubic 4-fold. We can define
BBr(X2,W ) as in Remark 4.8, and the arguments of Sections 3 and 4 show that Db(Y1)
embeds into BBr(X2,W ). The methods of this section apply essentially verbatim to show
that Db(Y2) also embeds into BBr(X2,W ); the only change is that the bundle K over Y2

now has rank 2, and so

Hom(S,K)/GL(S) ∼= Hom(∧2S,∧2K)

is still a vector bundle, but of rank 1. Fortunately Y2 is now codimension 1 in P5, and so (5.3)
is still an isomorphism. Unfortunately we do not have a proof that this second embedding
is actually an equivalence, i.e. we have no analogue of Theorem 5.12. If we did, we would
recover Kuznetsov’s result that Db(Y1) embeds into Db(Y2) [Kuz06, Thm. 2].

– r = 2, d = 9. In this case both Y1 and Y2 are smooth Calabi-Yau 5-folds, and we have two-
thirds of a proof that they are derived equivalent. As before we have Db(Y1) ∼= Db(X1,W ) ∼=
BBr(X2,W ), and Proposition 5.3 still holds, but we do not know how to construct a kernel
globally over Y2 (since OΓ only works for d = 6 or 7).
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– r = 2, d = 8 or d > 9. We do have a category BBr(X2,W ), but Y2 is necessarily singular,
so our calculations with maximally isotropic subspaces show that BBr(X2,W ) is in some
sense a non-commutative resolution of Db(Y2). Indeed, we speculate that the homological
projective dual to Gr(2, V ) is the non-commutative resolution of the Pfaffian locus Pf ⊂
PHom(∧2V,∧2S) constructed as follows: take the stack[ {

(x, ω) ∈ Hom(S, V )⊕Hom(∧2V,∧2S) : ω 6= 0
}/

GL(S)
]

with the superpotential

W (x, ω) = ω ◦ ∧2x,

and take the subcategory of matrix factorizations built from the vector bundles{
Syml S∨ ⊗ (detS∨)m : l ∈

[
0, 1

2(d− 1)
)
, m ∈

[
0,
(
d
2

))}
when d is odd, or {

Syml S∨ ⊗ (detS∨)m : l ∈
[
0, 1

2d
)
, m ∈

[
0,
(
d
2

))}
when d is even. This line of inquiry is currently being pursued by Ballard et al. [BDFIK].
Of course one would like to begin by checking that this is equivalent to Kuznetsov’s non-
commutative resolution of Pf when d = 6 and 7 [Kuz06].

– If r > 2 then it is not clear to us how to proceed.
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